- of our first panel, David Gabel.
- I think the introductions are pretty much in our
- 3 panel, so perhaps we can just move right into the
- 4 presentations.
- 5 David.
- 6 Panel Presentation I Data Gathering Initiatives
- 7 DOCTOR DAVID GABEL: Good morning, and thank you
- 8 for having me here.
- 9 At the outset, I need to point out that the
- 10 research that I'm going to be reporting here is done jointly
- 11 with Florence Kwan, who is also here in the audience.
- What you're going to hear this morning are a few
- 13 different presentations.
- Myself, I'm going to be providing the results of a
- 15 study that looked at the availability of broadband service
- 16 throughout the United States.
- You'll also be hearing discussions, talking at a
- 18 more focused level, at a state level. Also, there will be a
- 19 discussion this morning about what's the cost of providing
- 20 access to the internet at a rapid, fast speed.
- 21 So we sort of, I think, have three types of talks
- 22 you're going to hear. What's going on at the national
- level, more focused state level, and then what's the cost
- involved in rolling out high-speed access to the internet.
- I just want to start with a map or two to

- 1 illustrate why I or Florence and I chose the approach to
- 2 this question the way we did.
- One could say that broadband service is available
- 4 in New York City. Here is the Island of Manhattan. And I
- 5 know it's a little bit hard to see the colors, but
- 6 essentially when you look at Manhattan, service is only
- 7 available in the mid 50s on the East Side, mid 50s on the
- 8 West Side, and then also down around 12th Street.
- 9 So to say that service is available in Manhattan
- 10 is a correct statement, but it really misses the important
- 11 point that investors have to make decisions about where to
- 12 first roll out the service.
- And so looking at this map of Manhattan, or if I
- 14 can, the next map of Queens, I asked myself, well, why did
- 15 firms, such as in this case, I think it's TCI, decide to
- 16 roll out service in particular neighborhoods first?
- 17 And for those of you who are familiar with New
- 18 York, you'd probably say it's a no brainer here, because if
- 19 you look up at the top in Flushing and Little Neck, well,
- that's the wealthy area of Queens; and if you look in the
- 21 bottom yellow, the area of Queens which is going to get
- 22 service last, that's the low-income area.
- So it seems to be not surprisingly driven by
- 24 targeting the service to areas that have higher incomes.
- Well, that's our intuition. And I wanted to rely

- on my intuition when I undertook, or Florence and I
- 2 undertook this study to try to model the roll out of
- 3 high-speed access to the internet in the United States.
- And what we did was contact some people who are
- 5 involved in actually making these investment decisions.
- So, for example, we talked to the firm STRAT Soft
- 7 and also some xDSL providers, and said what criteria did you
- 8 use in deciding where to first roll out access to the
- 9 internet.
- 10 And based on these conversations, not
- 11 surprisingly, we learned that some of the factors were not
- 12 only income, the number of business customers in a
- 13 particular community.
- 14 Also, what I learned from it were there were
- things like how far the customer is from the internet
- 16 backbone?
- Now, there's two reasons for that. One, is the
- 18 issue that the Senator already mentioned, and that is that
- 19 there's the transport cost.
- The second is, the more hops you have to make in
- 21 order to reach the internet backbone, the lower the quality
- 22 of service.
- So we wanted to develop a model that would reflect
- 24 not only the demographics and economic conditions in a
- 25 particular market, but also supply side considerations, such

- 1 as how far a customer is from the internet backbone and how
- 2 that affects the cost of providing access.
- And, finally, on that note, we wanted to take into
- 4 account that, because of the cost structure of this
- 5 industry, there are large fixed costly; consequently the
- 6 higher the population density or, more importantly, the
- 7 higher the telecommunication density in the market, the
- 8 greater the likelihood that neighborhood would first receive
- 9 service.
- 10 So what we did was, went out and collected data.
- 11 It's a representative same for the United States and we
- 12 found out is service available or not available at a
- 13 particular address?
- 14 We looked at both xDSL and Cable Modem Service.
- And so now I'd like to just turn to -- I want to
- 16 show you what turns up descriptive statistics. I'm going to
- 17 run through three tables with you.
- The first finding is that, not surprisingly, that
- 19 the availability is a function of telecommunications density
- 20 income and rates.
- Now, this is just what we call descriptive
- 22 statistics. I'm not controlling for everything at once.
- 23 I'm just saying, as you'll see in the subsequent table, that
- 24 if you're in high, densely populated area, there's a greater
- likelihood of you having access to the internet at a high

- 1 speed. If you're in a wealthy area, the same holds. And
- 2 finally, if you're in an area dominated by white households,
- 3 there's a greater likelihood that you're going to have
- 4 access to the internet at a high speed.
- In the tables that we're going to run through,
- 6 what we're measuring, do you have access or not? If you
- 7 have access, there's a value of zero in the table. If you
- 8 -- I'm sorry, if you do not have access, there'll be a
- 9 value of zero. If you do have access, there's a value of
- 10 one.
- The first table reports that in areas in which the
- 12 telephone line density is less than 50 lines per square
- 13 mile, 98 percent of the subscribers cannot obtain DSL or
- 14 cable modem service. So the survey shows what one would
- 15 expect. The service is not available in rural areas of the
- 16 United States.
- The second table reports that access to high-speed
- 18 cable modems or DSL does not increase monotonically with
- 19 income. And this is due to supply side considerations. And
- 20 that is that poor people are often concentrated in cities
- 21 and in the cities we have wire centers that have a large
- 22 number of subscribers. So when somebody is trying to decide
- where they're going to deploy xDSL services, they often
- 24 target wire centers, where you can reach a large number of
- 25 customers.

- So we'll see in one of the tables that it isn't
- 2 always the case that deployment always increases with
- 3 income, but it generally does.
- 4 And, finally, the third table reports that an area
- 5 with a high concentration of nonwhite householders are less
- 6 likely to be offered high-speed access to the internet than
- 7 areas with a high concentration of white householders.
- Now, on that bullet, I want you to keep in mind
- 9 that I'm not going to be claiming that there's any redlining
- 10 here, because once we move to the next set of slides, which
- 11 involve doing a statistical analysis using regression
- 12 techniques, we're going to see that there's no statistical
- 13 evidence of redlining.
- So let me just quickly run through the tables with
- 15 you.
- Here, the top row says: What if a customer lives
- in an area where the number of telephone lines per square
- 18 mile is between zero and 50? That's the first column.
- And it says that in my sample I had 41 customers
- 20 in this national sample that satisfied this criteria and did
- 21 not have access to the internet at a high speed, and I had
- 22 one area in the nation where the density is less than
- 23 50 lines per square mile, and that one customer had access
- 24 to the internet at high speed.
- So looking in a rural area, you see 97.62 do not

- 1 have access at a high speed and 2 percent do.
- 2 And then going to the other extreme, where the
- 3 tele density is up in the range of 140,000 lines per square
- 4 mile, you see everyone has access to the internet at a high
- 5 speed.
- 6 Yes, one minute. Okay.
- Well, since we have only one minute left, let me
- 8 just move through, all the way to the end, we'll go past
- 9 that, past that, past that.
- 10 All right. I then did a statistical analysis,
- 11 where I was running a regression, where I'm saying, well,
- 12 there's lots of things that affect a decision to deploy
- 13 high-speed access to the internet. And I want to control
- 14 for all of the factors.
- And the factors are tele density, is the service
- territory served by a regional Bell operating company?
- I thought that this was an important variable to
- 18 include, because, as you know, Congress is concerning
- 19 relaxing the restriction on RBOC providing interlarder
- 20 (phonetic) data service. And I want to know if a customer
- 21 resides in a territory served by an RBOC, is there a lower
- 22 likelihood that those customers have access to the internet
- 23 at a high speed because of the 271 restriction?
- Then I have factors controlling for race, income,
- 25 how new is the housing stock, and estimated minimum distance

- 1 to the internet backbone.
- And since I'm out of time, we won't look at the
- 3 charts, we'll just go to the very last slide, where I
- 4 summarize the results.
- And that is availability of high-speed access
- 6 increases with telecommunications density and income, which
- 7 is what you would expect, so the results form the sample are
- 8 consistent with your intuition.
- 9 Rate turns out to not to be a factor in the
- 10 deployment of access to high-speed networks, and that is
- 11 because after you control for income, the factor of rate
- 12 that shows up in the on table disappears. So my conclusion
- is there's no evidence of redlining in this industry at this
- 14 point in time.
- And then, lastly, the data analysis indicates the
- 16 customers served by regional Bell operating companies, all
- 17 else being equal, that means I'm controlling for tele
- 18 density, I'm controlling for income, I'm controlling for the
- 19 age of the neighborhood, have the same opportunity to
- 20 subscribe to high-speed internet service as customers served
- 21 by non-RBOC.
- In fact, the one most, to me, most intriguing
- 23 thing for policy makers to consider, is there's two
- 24 companies that are sort of outliers with the RBOC.
- One is Bell Atlantic. Bell Atlantic subscribers

- 1 have a higher likelihood of having high-speed access to the
- 2 internet than subscribers in other areas of the nation.
- And one possible way of interpreting that, and
- 4 people can argue about how to interpret it, I'm just going
- 5 to give you, first, the statistical result, which I already
- 6 have.
- 7 But one way of interpreting this, is that Bell
- 8 Atlantic has been on the frontier of opening up their
- 9 network.
- 10 That's why the FCC granted them the 271 approval
- in the State of New York; and coinciding with that, because
- 12 perhaps they're opening up their network the fastest, that's
- why we see there being a greater likelihood of high-speed
- 14 access to the internet in the Bell Atlantic territory than
- in other areas of the nation.
- I said there was two RBOCs. The other was U.S.
- 17 West. U.S. West statistically is just right on the cusp of
- 18 being statistically significantly different than other
- 19 telephone companies, and they, too, seem to be rolling out
- 20 service.
- Not only U.S. West, but everybody in the U.S. West
- 22 territory seems to be providing the service to customers at
- 23 a faster pace than in other areas of the nation.
- So those are my findings, the best I can, in five
- 25 minutes.

1	And thank you.
2	(Applause.)
3	DOCTOR WILLIAM LEHR: Hi, I'm Bill Lehr, and as
4	with the remarks of David Gabel, the work I'm going to be
5	talking about today is actually work that's joint of a
6	number of folks, Sharon Gillette, who is also here in the
7	front row; and a bunch of work with a bunch of the slides
8	that I would have shown you if you'd allowed me to bore you
9	for a lot longer than five minutes, was due to folks at the
10	Massachusetts Technology Collaborative. So hopefully you'll
11	get another chance to hear about and help from folks at the
12	Massachusetts Software Council.
13	Go to the next slide.
14	I'm working with the MIT Internet & Telcomm's
15	Conversion Consortium, and the basic idea of this consortium
16	is that we're interested in thinking about, if you took the
17	vision what an internet is going to be, if you really think
18	of it, it could be the platform for our communications
19	infrastructure in the future.
20	If that's really going to happen, then a lot of
21	things have to change.
22	Give me the next slide.
23	So one of the areas, of course, is broadband,
24	because we really view broadband access, and a broadband
25	internet is really what a vision of the true internet and

- 1 all these wonderful services entails.
- Otherwise we think that this whole, you know, talk
- 3 about electronic commerce, streaming media, all these sorts
- 4 of wonderful things, distance education, all these things
- 5 are going to grind to a halt for lack of available capacity.
- 6 When we think about broadband research, we think
- 7 about it in a number of different ways. And I was heartened
- 8 to hear the comments of Commissioner Powell mentioning, you
- 9 know, there's a whole lot of things we need to be looking at
- 10 here.
- 11 Availability of the service and where it's being
- 12 deployed is one question, but it's certainly not the only
- 13 question.
- We understood at MIT, in looking at the technology
- 15 we got a couple of technology projects that are
- 16 investigating such things as what happens if you try and
- 17 provide really high-speed wireless access in particular
- 18 locations.
- We're also looking at the some of the implications
- 20 of what happens when you start aggregating this traffic of a
- 21 very different type than telecommunications carriers have
- 22 been accustomed to handling in the past.
- We've also done some work on cross modeling.
- 24 We've done some work on modeling local access deployment
- 25 costs under a number of different technologies and we're

- 1 just now in the process of trying to see whether you can
- 2 look across technology and learn some interesting things.
- We also have some work that's going on looking at
- 4 what it might cost if you were going to try to unbundle
- 5 cable modems, using one of the better technologies.
- 6 I'm not going to be talking about any of that
- 7 work. What I'm going to be talking about today is our work
- 8 in industry structure and availability of residential
- 9 broadband access in the U.S.
- Next slide.
- 11 As I said before, if you think about broadband
- 12 residential access, and you believe that the internet is
- 13 going for structure for the future, then really meaningful
- 14 competition is going to mean, in the last mile, it's going
- 15 to mean competition amongst broadband internet access
- 16 options.
- And so, for example, looking at the availability
- 18 of dial-up internet access, while very important today, is
- 19 really not what competition in this industry is going to
- 20 mean in the future.
- Next slide.
- So first there's a question of what is broadband
- 23 and what are you going to look at?
- Well, that's really a hard question. There's a
- lot of different services out there, and the services are

- 1 changing over time, and we don't really know where exactly
- 2 market is going to go.
- 3 And the one thing about the internet is that the
- 4 internet is not what you thought it was going to be. The
- 5 whole idea of the internet is the internet enables the
- 6 possibility of things, so that we don't have to depend on,
- 7 oh, you only wanted to make real time, point-to-point to
- 8 telephone communications. No? You can do whatever you want
- 9 to do. That's the idea.
- 10 So what is broadband?
- 11 Well, it's better than what we can get from
- 12 dial-up. That's a good working definition right now, for at
- 13 least of view, for collecting data.
- 14 What researchers said, let's not think about ISDN,
- 15 although ISDN is important, let's not think about that as
- 16 broadband, and let's not also think about the satellite
- 17 services that use a dial-up or turn channel, direct PC, as
- 18 broadband, although there are reasonable arguments as to why
- 19 that might be worth considering.
- The research we started, we looked in the fall of
- 21 1998, and we said, what's broadband?
- Well, DSL, there weren't really no DSL deployment
- 23 at the time.
- So if you're going to look at what was actually
- 25 getting deployed, that meant looking at cable modems.

- A direct key (phonetic) feature that's really not
- 2 intrinsic to broadband, but really has a lot to do with the
- 3 way in which these services will change the way people use
- 4 the internet and what they need is all reborn.
- And, in effect, you don't really have to have
- 6 broadband services, but that's a really key feature.
- 7 The next characteristic is bandwidth needs. And
- 8 here you can get into all kinds debates, questions about
- 9 whether or not you need higher bandwidth in the downstream
- 10 channel than you need in the upstream channel. It's really
- 11 a question of what applications you're running.
- There's also a question of, are you talking about
- 13 peak versus average?
- 14 You know, what people really want to do on the
- 15 internet is they want to be able to burst at very high data
- 16 rates, but most of the time, they're not actually putting
- 17 traffic on the internet. And that is implications for how
- 18 you actually provision this.
- 19 And there's questions of what kind of applications
- 20 are being provided, and there are also what sorts of
- 21 services are supported?
- 22 Are you allowed -- when you get broadband access,
- 23 if you're a person who is running a small business, are you
- 24 allowed to put a server on your broadband connection?
- Some broadband providers will allow you to do

- 1 that, others won't.
- Those of you that have been following the news,
- 3 NAPSTER is this program that allows people to swap music.
- 4 Now, that's probably going to run into problems with
- 5 intellectual property before it runs into bandwidth
- 6 problems, but that caused a lot of problems for folks on the
- 7 internet. In some ways, it's a logical conclusion of where
- 8 the technology was going. So it's proposing a real
- 9 interesting problem for the industry.
- Next slide.
- Okay. So I was given some questions that said,
- 12 what are you really interested in?
- So I nearly tore up most of my presentation and
- 14 then tried to answer those.
- 15 So some of these are things that we already heard
- 16 about from day to day, but they reflect back to research we
- 17 did in looking at where deployments were as of mid 1999.
- 18 There's another fact, is TV affecting decisions
- 19 people make?
- The first, obviously, you think from a cost
- 21 perspective. Population density is one of the most
- 22 important.
- Now, when you look at demographic data, what you
- 24 find is that highly dense areas also tend to have the
- largely populated areas, and also tend to be -- have high

- 1 per capita income. All these things are closely related and
- 2 go together.
- The second key characteristic for cable is you
- 4 have to look, how is cable going through a two-way upgrade?
- In other words, have they taken out the one-way
- 6 amplifiers that cable television networks used to have and
- 7 put in two-way amplifiers?
- 8 And a lot of places started doing this way back
- 9 when, a number of years ago, before they thought they were
- 10 going to go into the internet.
- So a lot of what you see in terms of deployment is
- 12 a result of decisions that were made sort of pre-internet
- 13 age.
- 14 If you're thinking about the self-services, then
- 15 you have to worry about things like how far away are you
- 16 from the central office and what kinds of other technologies
- 17 are there between the central office and the home?
- Digital loop carrier is a way in which they use to
- 19 economize on transmission, and it's not a single type
- 20 technology. There's many different types of digital loop
- 21 carrier and it tends to be -- it's going to be a big issue
- 22 in terms of looking at what happens with DSL.
- There's also questions about you're adjacent to a
- 24 broadband serving area. You know, if you're a poor
- 25 community next door to a rich community that got the

- 1 service, then you're more likely to get the service, too,
- 2 because it's easier to roll it out that way.
- If you think about it in terms of demand, again,
- 4 density and per capita income and population are all factors
- 5 that are displaying why they're located in particular areas.
- 6 Those tend, also, to be related. The high-income
- 7 areas, areas with highly educated folks are also areas where
- 8 people are much more likely to own PCs, are more likely to
- 9 have a higher willingness to pay, and internet access is
- 10 much more prevalent.
- 11 At least at this stage, you certainly see a very
- 12 strong effect in terms of who are you looking at? And this
- is more true about cable, perhaps, than DSL services, and I
- 14 have not really looked at sort of differences across the
- 15 RBOC, so I'm very interested in taking a closer look at
- 16 David Gabel's results.
- But from the cable carrier, you see people like
- 18 MediaOne, that were very aggressive in updating their
- 19 network, were in a much better position and were really
- 20 leaders in terms of deploying cable modem services over
- 21 their facilities.
- 22 And so, for example, in most areas of
- 23 Massachusetts -- I live in Concord, I don't happen to live
- in one of those areas -- where MediaOne is your provider,
- you're more likely in similar types of communities around

- 1 the United States to have cable modem access.
- 2 PCI historically had not made as many of those
- 3 upgrades and so there's a share of their network, they're
- 4 behind, although they're trying to catch up now.
- In terms of competition, when you look at the
- 6 competition, the question is -- one of the questions in our
- 7 analysis was, are they trying to carve up the territory or
- 8 are they actively trying to compete?
- 9 We see no evidence in the data right now that they
- 10 appear to be carving up the territory. In other words, you
- 11 know, the modem guys have the nice Community A, so the DSL
- 12 guys will grab the Community B, and we won't actually see
- 13 competition between the two services.
- In fact, it doesn't look like that's what's
- 15 happening, but it's still too early to tell.
- The other question, you really have to think
- 17 about, are we talking about business versus residential
- 18 services? DSL, to the extent it got an early rush, and
- 19 especially from the CLEG -- from the noncarriers, has been
- 20 focused initially on more business type service offerings,
- 21 whereas the cable modem is essential residential offering,
- 22 although that's a little different when you get away from
- 23 the major metropolitan areas.
- Next slide.
- For broadband to deployment in the U.S., these are

- the numbers, what we know -- this is from a bunch of
- different, various industry statistics, trade, press,
- 3 analysts reports. It's a snapshot in time.
- Essentially, there's about 2.4-million
- 5 subscribers, from Connet (phonetic) Strategies, out of
- 6 something like 67-million cable subscribers, or 3.6 percent
- 7 of all cable subscribers are currently getting cable modem
- 8 service.
- There's about 48-million homes that are currently
- 10 passed or the penetration of the modems is about 5 percent
- of the households that are passed by cable -- where the
- 12 cable service is actually available.
- Today, about 50 percent of the cable systems are
- 14 two-way cableble (phonetic), and they're projecting --
- 15 strategies group is projecting that by 2001 90 percent of
- 16 the cable systems will be two-way cable, which means then
- 17 it'll be relatively easy for them to offer cable modem
- 18 service, should they want to do that.
- DSL service is about 500,000 DSL residential
- 20 subscribers today. About 57 percent of the central offices
- 21 are capable of offering digital and private line services
- 22 and actually have DSLAMs in them, which means that a much,
- 23 much larger share of the number of lines actually make that
- 24 available.
- 25 And in terms of PC internet users, about

- 1 50 percent of the people are using PCs from the home and
- about 90 percent of those PC users are on-line, according to
- 3 Harrison, are active.
- 4 And on another consumer survey there, when they
- 5 surveyed internet access, it looks like something like
- 6 6 percent of the folks that are on the internet are having
- 7 access to broadband.
- 8 Next slide.
- 9 So in terms of availability, especially from the
- 10 Academy, there's lots and lots of problems. There's trade
- 11 press, industry statistics, analyst report data, is the best
- 12 that's available, in terms of understanding what really is
- 13 available right now and where.
- 14 But there's wide variation in the estimates.
- 15 There's typically a lack of explanation in the
- 16 methodologies. You capture these statistics in the trade
- 17 press, you don't really know where they're reported.
- When you compare and even some times from
- 19 allegedly the same report, some \$10,000 report that as
- 20 academics may not have, they don't necessarily even agree.
- 21 And there's not a time series, because the way in
- 22 which things are being defined and tracked over time is
- 23 changing all the time.
- Next slide.
- In terms of the state of the competition, what we

- 1 need to look at is how many facilities providers and
- 2 services are being offered?
- Today you see a lot of competitive local exchange
- 4 carriers offering modem service on the basic ILEC
- facilities. But you're only now beginning to see
- 6 communities where both DSL service and cable modem service
- 7 is available from two alternative physical sources, and
- 8 perhaps quite a number of suppliers.
- There are a lot of communities in Massachusetts
- 10 now where there's more than 10, 20 suppliers you can get
- 11 broadband service from, which would appear to be very, very
- 12 competitive.
- But you should be aware that when we talk about
- 14 broadband, it's very, very local. A lot of the work now
- 15 being internet access was able to show very, very high rates
- 16 of competition because you can almost look anywhere in the
- 17 United States and it's a local phone call to get to a
- 18 dial-up.
- 19 Local service, it's really different.
- 20 And the chart, the picture of Manhattan, is much
- 21 more of a story. And if you were to look at that, even at
- the housing stock level, you'd find similar replication of
- 23 that sort of picture.
- There's a wide variety of service offerings.
- There's a whole bunch of issues that are going to become

- 1 important over time.
- 2 Broadband, the deployments are progressing very,
- wery rapidly. So if we're going to sit there and say, oh,
- 4 my god, there's a digital divide, yes, it appears there is
- 5 in the data, taken with snapshot at this point time.
- But I think it makes a lot of sense that the
- 7 services are being deployed first in the communities where
- 8 they are being deployed.
- 9 Will there be areas where the service is still to
- 10 come, and it'll probably take public policy to make sure
- 11 they come there. Yes, I think that is definitely going to
- 12 be the case.
- Is it going to be anything like what it looks like
- 14 today? No, I don't think that's going to be the case.
- I think the way in which services are being
- 16 deployed, the more interesting issue is going forward from a
- 17 policy point of view and an academic research point of view,
- 18 are less, can you get service if you want it; and more, what
- 19 is the quality of the service, if you get it, and do you
- 20 really have legitimate choices amongst carriers who are
- 21 really competing aggressively?
- 22 And with that, I must be out of time, so I'll
- 23 stop.
- 24 (Pause.)
- DOCTOR VICTOR GLASS: Thanks very much, Brett, for

- 1 inviting me to speak here.
- 2 My name is Victor Glass, and I represent the
- 3 National Exchange Carrier Association, and I'll get into who
- 4 that company is in a minute.
- 5 But the theme that I want to talk about is
- 6 broadband is coming to rural America and you'll hear about
- 7 similar constraints and similar progress that you heard from
- 8 the other speakers, but focused more on rural America.
- 9 Okay. National Exchange Carrier Association, most
- 10 of you, I presume, have not heard of our organization,
- 11 supports over 1100 small telephone companies, primarily
- 12 rural telephone companies. We set their access rates or
- 13 their wholesale rates that they charge primarily
- 14 long-distance carriers for completing long-distance calls
- over local networks. We're also in tariffing DSL broadband
- 16 services.
- 17 The challenge for us in setting rates and for
- 18 policy makers is that rural America is not only different
- 19 from non-rural America, but world telephone companies are
- 20 very different from each other.
- 21 And we supply this data to the World Task Force,
- 22 where if you look at the bottom of the table -- I don't know
- 23 if people behind the pylon and way back there can see it,
- 24 but basically it -- if you want to look at averages, and
- 25 averages are very deceptive, the lines per square mile in

- 1 rural telephone company areas is 19 lines per square mile --
- 2 quite a bit lower than what David Gabel was talking about
- 3 for getting DSL service -- versus an average of 127 lines
- 4 per square mile in non-rural telephone company areas,
- 5 serving areas.
- 6 However, if you look at the minimum and max in the
- 7 rural areas, there are some telephone companies out there
- 8 that have far less than one person -- far fewer than on
- 9 person per square mile versus one rural telephone company
- 10 that has over 407 lines per square mile. Not exactly what
- 11 you would consider a rural serving area.
- Okay, let's go on.
- Now, we've been looking at the potential for
- 14 rolling out broadband service, DSL service, in the rural
- 15 study areas that we serve, and we found that if you look at
- 16 it, 45 percent of the lines in the rural America that we
- 17 serve, the customers are within 13 kilo feet, 13,000 feet of
- 18 a switching point. A central office or remote switch. And
- 19 those are prime candidates for DSL service.
- There are 46 percent of the lines that are between
- 21 13 kilo feet and 34 kilo feet or about 5 miles from a
- 22 switching point, and we found that there is SDSL service.
- 23 For example, Paradine (phonetic), has a service that can
- 24 reach those customers with the speeds of about 786 kilobits
- 25 per second. So there's a product out there for that group

- 1 of customers.
- 2 And finally there are 7 percent of the lines right
- 3 now that are greater than basically 5 miles from a switching
- 4 point in the rural areas. And if you're willing to accept a
- 5 speed of about 144 kilobits per second, there is IDSL and
- 6 ISDN, which can serve those customers, and providing them
- 7 faster speeds.
- Anyway, this assumes that the lines, the network
- 9 out there, is actually conditioned so that you can actually
- 10 provide the service. There are other technical problems.
- 11 But the point is that there are services out there to reach
- 12 these customers.
- 13 Next slide.
- 14 From our access market survey -- we survey our
- 15 pool members, our clients every two years -- we found that
- 16 rural telephone companies are rapidly deploying a broadband
- 17 network, a data intensive network.
- 18 For example, we found that 151 companies in
- 19 42 states and 98 additional companies are in the planning
- 20 stages to roll out DSL in their company serving areas or
- 21 study areas.
- They can potentially serve 1.8-million customers,
- and we, as a comparison, the 1100 study areas actually serve
- 24 6-million customers. So there's a rapid rollout of DSL
- 25 service. Not to every customer in those areas, but these